Recurrence Relations for the Linear Transformation Preserving the Strong $q$-Log-Convexity
نویسندگان
چکیده
منابع مشابه
Recurrence Relations for the Linear Transformation Preserving the Strong $q$-Log-Convexity
Let [T (n, k)]n,k>0 be a triangle of positive numbers satisfying the three-term recurrence relation T (n, k) = (a1n + a2k + a3)T (n− 1, k) + (b1n + b2k + b3)T (n− 1, k − 1). In this paper, we give a new sufficient condition for linear transformations
متن کاملLinear Transformations Preserving the Strong $q$-log-convexity of Polynomials
In this paper, we give a sufficient condition for the linear transformation preserving the strong q-log-convexity. As applications, we get some linear transformations (for instance, Morgan-Voyce transformation, binomial transformation, Narayana transformations of two kinds) preserving the strong q-log-convexity. In addition, our results not only extend some known results, but also imply the str...
متن کاملQ-analogue of a Linear Transformation Preserving Log-concavity
Log-concave and Log-convex sequences arise often in combinatorics, algebra, probability and statistics. There has been a considerable amount of research devoted to this topic in recent years. Let {xi}i≥0 be a sequence of non-negative real numbers. We say that {xi} is Log-concave ( Log-convex resp.) if and only if xi−1xi+1 ≤ xi (xi−1xi+1 ≥ xi resp.) for all i ≥ 1 (relevant results can see [2] an...
متن کاملPreserving Log-Convexity for Generalized Pascal Triangles
We establish the preserving log-convexity property for the generalized Pascal triangles. It is an extension of a result of H. Davenport and G. Pólya “On the product of two power series”, who proved that the binomial convolution of two log-convex sequences is log-convex.
متن کاملLinear transformations preserving log-concavity
In this paper, we prove that the linear transformation yi = i ∑ j=0 ( m+ i n+ j ) xj , i = 0, 1, 2, . . . preserves the log-concavity property. © 2002 Elsevier Science Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2016
ISSN: 1077-8926
DOI: 10.37236/5913